8.2: The Trigonometric Ratios (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    41318
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    There are six common trigonometric ratios that relate the sides of a right triangle to the angles within the triangle. The three standard ratios are the sine, cosine and tangent. These are often abbreviated sin, cos and tan. The other three (cosecant, secant and cotangent) are the reciprocals of the sine, cosine and tangent and are often abbreviated csc, sec, and cot.

    8.2: The Trigonometric Ratios (2)

    Given an angle situated in a right triangle, the sine function is defined as the ratio of the side opposite the angle to the hypotenuse, the cosine is defined as the ratio of the side adjacent to the angle to the hypotenuse and the tangent is defined as the ratio of the side opposite the angle to the side adjacent to the angle.
    \[\begin{aligned}
    \sin \theta &=\frac{o p p}{h y p} \\
    \cos \theta &=\frac{a d j}{h y p} \\
    \tan \theta &=\frac{o p p}{a d j}
    \end{aligned}
    \]A common mneumonic device to help remember these relationships is
    -SOHCAHTOA-which identifies the sin as Opp over Hyp Cos as Adj over Hyp and the Tan as Opp over Adj.

    An acute angle placed in the other position of a right triangle would have different oppposite and adjacent sides although the hypotenuse would remain the same.

    8.2: The Trigonometric Ratios (3)

    Examples: Trigonometric Ratios
    Find \(\sin \theta, \cos \theta\) and \(\tan \theta\) for the given angle \(\theta\)

    8.2: The Trigonometric Ratios (4)

    In order to find the sin and cos of the angle \(\theta\), we must first find the hypotenuse by using the Pythagorean Theorem \(\left(a^{2}+b^{2}=c^{2}\right)\)

    since we know the legs of the triangle, we can substitute these values for \(a\) and \(b\) in the Pythagorean Theorem:
    \[\begin{array}{c}
    3^{2}+5^{2}=c^{2} \\
    9+25=c^{2} \\
    34=c^{2} \\
    \sqrt{34}=c
    \end{array}
    \]Now that we know the hypotenuse \((\sqrt{34}),\) we can determine the sin, cos and tan for the angle \(\theta\)
    \[\begin{aligned}
    \sin \theta &=\frac{3}{\sqrt{34}} \\
    \cos \theta &=\frac{5}{\sqrt{34}} \\
    \tan \theta &=\frac{3}{5}
    \end{aligned}
    \]Find \(\sin \theta, \cos \theta\) and \(\tan \theta\) for the given angle \(\theta\)

    8.2: The Trigonometric Ratios (5)

    Again, in order to find the sin, cos and tan of the angle \(\theta,\) we must find the missing side of the triangle by using the Pythagorean Theorem. since, in this case, we know the hypotenuse and one of the legs, the value of the hypotenuse must be substituted for \(c\) and the length of the leg we're given can be substituted for either
    \(a\) or \(b\)

    \[\begin{array}{c}
    4^{2}+b^{2}=9^{2} \\
    16+b^{2}=81 \\
    b^{2}=65 \\
    b=\sqrt{65}
    \end{array}
    \]Now that we know the length of the other leg of the triangle \((\sqrt{65}),\) we can determine the sin, cos and tan for the angle \(\theta\)
    \[\begin{aligned}
    \sin \theta &=\frac{\sqrt{65}}{9} \\
    \cos \theta &=\frac{4}{9} \\
    \tan \theta &=\frac{\sqrt{65}}{4}
    \end{aligned}
    \]In addition to the examples above, if we are given the value of one of the trigonometric ratios, we can find the value of the other two.
    Example
    Given that \(\cos \theta=\frac{1}{3},\) find \(\sin \theta\) and \(\tan \theta\)
    Given the information about the cosine of the angle \(\theta,\) we can create a triangle that will allow us to find \(\sin \theta\) and \(\tan \theta\)

    8.2: The Trigonometric Ratios (6)

    Using the Pythagorean Theorem, we can find the missing side of the triangle:
    \[\begin{array}{c}
    a^{2}+1^{2}=3^{2} \\
    a^{2}+1=9
    \end{array}
    \]\(a^{2}=8\)
    \(a=\sqrt{8}=2 \sqrt{2}\)
    Then \(\sin \theta=\frac{\sqrt{8}}{3}\) and \(\tan \theta=\frac{\sqrt{8}}{1}=\sqrt{8}\)
    You might say to yourself, "Wait a minute, just because the cosine of the angle \(\theta\) is \(\frac{1}{3},\) that doesn't necessarily mean that the sides of the triangle are 1 and \(3,\) they could be 2 and \(6,\) or 3 and 9 or any values \(n\) and \(3 n . "\)

    This is true, and if the sides are expressed as \(n\) and \(3 n,\) then the missing side would be \(n \sqrt{8},\) so that whenever we find a trigonometric ratio, the \(n^{\prime}\) s will cancel out, so we just leave them out to begin with and call the sides 1 and 3
    Example
    Given that \(\tan \theta=\frac{\sqrt{5}}{7},\) find \(\sin \theta\) and \(\cos \theta\)
    First we'll take the infomation about the tangent and use this to draw a triangle.

    8.2: The Trigonometric Ratios (7)

    Then use the Pythagorean Theorem to find the missing side of the triangle:
    \[\begin{array}{c}
    \sqrt{5}^{2}+7^{2}=c^{2} \\
    5+49=c^{2} \\
    54=c^{2} \\
    \sqrt{54}=3 \sqrt{6}=c
    \end{array}
    \]So then:
    \[\sin \theta=\frac{\sqrt{5}}{\sqrt{54}}=\sqrt{\frac{5}{54}}
    \]\[\cos \theta=\frac{7}{\sqrt{54}}=\frac{7}{3 \sqrt{6}}
    \]

    Exercises 1.2
    Find \(\sin \theta, \cos \theta\) and \(\tan \theta\) for the given triangles.

    8.2: The Trigonometric Ratios (8)

    8.2: The Trigonometric Ratios (9)

    Use the information given to find the other two trigonometric ratios.
    11. \(\quad \tan \theta=\frac{1}{2}\)
    12. \(\quad \sin \theta=\frac{3}{4}\)
    13. \(\quad \cos \theta=\frac{3}{\sqrt{20}}\)
    14. \(\quad \tan \theta=2\)
    15. \(\sin \theta=\frac{5}{\sqrt{40}}\)
    16. \(\sin \theta=\frac{7}{10}\)
    17. \(\cos \theta=\frac{9}{40}\)
    18. \(\quad \tan \theta=\sqrt{3}\)
    19. \(\cos \theta=\frac{1}{2}\)
    20. \(\cos \theta=\frac{3}{7}\)
    21. \(\sin \theta=\frac{\sqrt{5}}{7}\)
    22. \(\quad \tan \theta=1.5\)

    8.2: The Trigonometric Ratios (2024)
    Top Articles
    DC: Dimensional Luck Chapter 90
    WordScapes tägliches Puzzle Archive - WordScapes Lösungen aller Level
    Funny Roblox Id Codes 2023
    Golden Abyss - Chapter 5 - Lunar_Angel
    Www.paystubportal.com/7-11 Login
    Joi Databas
    DPhil Research - List of thesis titles
    Shs Games 1V1 Lol
    Evil Dead Rise Showtimes Near Massena Movieplex
    Steamy Afternoon With Handsome Fernando
    Which aspects are important in sales |#1 Prospection
    Detroit Lions 50 50
    18443168434
    Newgate Honda
    Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
    Grace Caroline Deepfake
    978-0137606801
    Nwi Arrests Lake County
    Justified Official Series Trailer
    London Ups Store
    Committees Of Correspondence | Encyclopedia.com
    Pizza Hut In Dinuba
    Jinx Chapter 24: Release Date, Spoilers & Where To Read - OtakuKart
    How Much You Should Be Tipping For Beauty Services - American Beauty Institute
    Free Online Games on CrazyGames | Play Now!
    Sizewise Stat Login
    VERHUURD: Barentszstraat 12 in 'S-Gravenhage 2518 XG: Woonhuis.
    Jet Ski Rental Conneaut Lake Pa
    Unforeseen Drama: The Tower of Terror’s Mysterious Closure at Walt Disney World
    Kcwi Tv Schedule
    What Time Does Walmart Auto Center Open
    Nesb Routing Number
    Olivia Maeday
    Random Bibleizer
    10 Best Places to Go and Things to Know for a Trip to the Hickory M...
    Black Lion Backpack And Glider Voucher
    Gopher Carts Pensacola Beach
    Duke University Transcript Request
    Lincoln Financial Field, section 110, row 4, home of Philadelphia Eagles, Temple Owls, page 1
    Jambus - Definition, Beispiele, Merkmale, Wirkung
    Ark Unlock All Skins Command
    Craigslist Red Wing Mn
    D3 Boards
    Jail View Sumter
    Nancy Pazelt Obituary
    Birmingham City Schools Clever Login
    Thotsbook Com
    Funkin' on the Heights
    Vci Classified Paducah
    Www Pig11 Net
    Ty Glass Sentenced
    Latest Posts
    Article information

    Author: Ray Christiansen

    Last Updated:

    Views: 6308

    Rating: 4.9 / 5 (69 voted)

    Reviews: 84% of readers found this page helpful

    Author information

    Name: Ray Christiansen

    Birthday: 1998-05-04

    Address: Apt. 814 34339 Sauer Islands, Hirtheville, GA 02446-8771

    Phone: +337636892828

    Job: Lead Hospitality Designer

    Hobby: Urban exploration, Tai chi, Lockpicking, Fashion, Gunsmithing, Pottery, Geocaching

    Introduction: My name is Ray Christiansen, I am a fair, good, cute, gentle, vast, glamorous, excited person who loves writing and wants to share my knowledge and understanding with you.